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Abstract 

I consider a class of two-party, zero sum sequential selection 

games where players compete over the composition of a panel 

comprising one or more seats. The players have a limited number of 

vetoes which can be used to reject panelists, with replacements being 

selected at random from a pool. One player wishes to maximize, and 

the opposing player wishes to minimize a utility function over panelist 

ratings. This selection game is notable in that 1) it is common, with 

application in fields such as trial jury selection, selection of job 

applicants by committee, selection of panelists and moderators for a 

debate, arbitrator selection, and group decision making, and 2) it leads 

to complex games, obscuring optimal strategies and thereby increasing 

the costs of optimal play. In this paper, I consider various simplified, 

limited foresight panel selection strategies and compare these with 

optimal play. I find that a commonly used limited foresight strategy – 

vetoing panelists less favorable than some fixed value, such as the 

replacement pool average - is not generally effective for selection 

games, such as jury selection, which comprise more than a few slots. 

 

 

 

1. Introduction 

Games of selection, wherein two or more parties compete over 

the composition of a panel, jury, board, or similar body, are 

commonplace. In the United States, trials by jury, for example, 

comprise in excess of 150,000 cases per year (U. S. Department of 
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State, 2009), each one requiring a jury selection process that can last 

from minutes to weeks. Similar veto-based selection games include the 

selection of moderators and panelists for debates (Farah, 2004), 

selection of an arbitrator (de Clippel, Eliaz, & Knight, 2014), filling job 

vacancies by committee, and narrowing the field of alternatives in 

group decision analysis (Justice & Jamieson, 1998). While the details 

of such games may differ, they typically allow players to veto particular 

candidate panelists, with the number of allotted vetoes being limited. 

United States federal criminal trials, for example, require a panel of 

twelve jurors with prosecution and defense each having six vetoes 

(known as peremptory challenges) (Federal Rules of Criminal 

Procedure, Title VI , Rule 14.).  

When vetoes are exercised, replacement candidates may be 

drawn at random from a pool. Because the favorability of replacements 

may initially be unknown, players are faced with a degree of 

uncertainty when exercising vetoes. The number of slots in the panel 

together with the limited number of vetoes and uncertainty in the value 

of replacements make such selection games particularly complex. Like 

chess and other complex games, it is not often the case that optimal 

strategies are known or even calculable by the players. Furthermore, it 

may be the case that the costs of obtaining optimal solutions, when 

factored in to the game outcomes, outweigh their benefits. Similar to 

what has been shown in voting games with financial incentives (Bassi 

& Williams, 2014), it is possible that only in high value cases will 

players attempt the deeper strategic analysis required for optimal play. 

For these reasons, selection games are prime candidates for the 

application of so-called ‘limited foresight’ strategies (Rubenstein, 

1998). Limited foresight (LF) strategies attempt to overcome costs 

associated with the solution of complex games by considering 

outcomes incrementally, accounting for consequences only within a 

few ‘moves’ of a current decision point, and disregarding further 

consequences as unforeseeable. This work explores the efficacy of LF 

strategies in two-party, zero sum sequential selection games. The work 

is organized as follows: In Section 2, we define the ‘canonical’ 

selection game which is similar to the so-called Strike and Replace 

system used in a majority of jury trials in the United States and many 

other countries. In Section 3, we provide the optimal solution to this 
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selection game, and in Section 4 we discuss the complexity of this 

solution. In Section 5, we provide the lowest order LF approximations. 

In Section 0, we compare these LF solutions with the optimal solution 

using the results of Monte Carlo simulations for the particular case of 

selection games with four vetoes per side. We provide discussion of our 

results in Section 7.  Our main result is that while low order LF 

solutions can be good strategies under particular conditions, for 

example, when players have an equal number of remaining vetoes, they 

are, in general, significantly inferior to optimal play. 

 

2. The Selection Game 

A set of 𝑁 ratings, 𝑅 =  {𝑟1, 𝑟2, … , 𝑟𝑁}, is chosen, with each 

rating 𝑟𝑖 ∈  [0,1]. Such ratings may represent, for example, the 

favorability of a panelist. Players P1 and P2 consider each rating 

sequentially and alternate in applying actions A ϵ {accept,veto}. If a 

player chooses accept, the rating remains in its slot. If a player chooses 

veto, the rating is replaced with a new rating, selected at random from 

a probability distribution, 𝜌(𝑟), which we will call the ‘pool’. If both 

players choose accept for the rating in slot i, then the rating for that slot 

is settled, and the game passes to slot i+1. Players can choose accept 

any number of times throughout the game, however, the number of 

times veto can be chosen is limited to C1 and C2, for players P1 and P2, 

respectively. We define the vector C = (C1, C2) to describe these veto 

allotments. P1 wishes to maximize, and P2 wishes to minimize, the 

utility, U, given by the formula,  

 𝑈(𝑅) =  ∏ 𝑟𝑖𝑖   eq. 1 

The game is defined as 𝐺(𝑁, 𝐶, 𝜌) . In the following, we shall suppress 

the dependence on the replacement pool rating distribution, 𝜌. 

We define the lower case quantities 𝒄 = (𝑐1, 𝑐2)  to represent the 

number of challenges remaining, and the lower case 𝑛  to represent the 

number of slots remaining to fill, at a given decision point. The state of 

play at any given decision point can then be described as  𝑆 =  (𝑛, 𝒄).  
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We define the sub-game representing a single slot i as 𝐺𝑖(𝑐). The 

complete selection game, 𝐺(𝑁, 𝐶), can be considered as a ‘direct 

product’ of sub-games, each such sub-game representing a single slot: 

 𝐺(𝑁, 𝐶) = 𝐺1(𝐶) ×  𝐺2(𝑐) × … 
× 𝐺𝑁(𝑐) 

eq. 2 

The direct product of games is interpreted as follows:  Each terminal 

node of a sub-game 𝐺𝑖 is associated with a root node for a subsequent 

sub-game, 𝐺𝑖+1,  the state being preserved. For example, if a terminal 

history for sub-game 𝐺1 results in the use of a vetoes for P1 and b vetoes 

for P2, then the subsequent sub-game resulting from that history will be 

the game  G2(C1-a,C2-b), and so on.  

A history for any branch in a sub-game terminates under the 

following conditions: 

1. Both players accept a rating. 

2. One player accepts and the opposing player has no 

remaining vetoes. 

3. Neither player has a remaining veto. 

An example sub-tree for a state with 𝒄 = (1,1) is shown in 

Figure 1. 

3. Optimal Solution 

The game 𝐺(𝑁, 𝐶) is solvable by backward induction, starting 

from the terminal nodes of the 𝑁𝑡ℎ sub-game (Caditz, 2015). Recursion 

relations to determine the value 𝑉(𝑛, 𝑐1, 𝑐2) of each node  are as 

follows: 

 𝑉(𝑛, 𝑐1, 𝑐2) =  𝑉(𝑛 − 1, 𝑐1, 𝑐2)  ѱ(𝑟∗(𝑛, 𝑐1 −

1, 𝑐2), 𝑟∗(𝑛, 𝑐1, 𝑐2 − 1))  
 

 
𝑟∗(𝑛, 𝑐1, 𝑐2) =   𝑉(𝑛, 𝑐1 − 1, 𝑐2)    𝑉(𝑛 − 1, 𝑐1, 𝑐2) ⁄   eq. 3 

 
𝑟∗(𝑛, 𝑐1, 𝑐2) =   𝑉(𝑛, 𝑐1, 𝑐2 − 1)    𝑉(𝑛 − 1, 𝑐1, 𝑐2) ⁄    

 

Where we have defined the function: 
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ѱ(𝑟∗, 𝑟∗) ≡  𝑟∗ ∫ 𝜌(𝑟)𝑑𝑟  + ∫ 𝑟𝜌(𝑟)𝑑𝑟  + 𝑟∗ ∫ 𝜌(𝑟)𝑑𝑟   

1

𝑟∗  
𝑟∗

𝑟∗

𝑟∗

0
  eq. 4 

(We note that zero sum games where both parties agree on the 

distribution 𝜌(𝑟) are ‘regular’, such that in all cases, 𝑟∗ ≤  𝑟∗. For a 

discussion of regularity see (DeGroot & Kandane, 1979), (Caditz, 

2015) and references therein. Equation 3 is subject to the boundary 

conditions: 

 𝑟∗(𝑛, 0,1) =   �̅�   

 𝑟∗(𝑛, 0, 1) =   0   

 𝑟∗(𝑛, 1, 0) =   �̅�  eq. 5 

 𝑟∗(𝑛, 1, 0) =   1   

 𝑉(𝑛, 0,0) =  �̅�𝑛    

 𝑉(0, 𝑐1, 𝑐2) =  1   

 

The value �̅�  is the average over the rating distribution, 𝜌(𝑟). The 

quantities 𝑟∗ and 𝑟∗ are interpreted as the veto thresholds for the 

maximizer, P1, and the minimizer, P2, respectively. At a given state, 

𝑆 = (𝑛, 𝒄), a rating, r, such that  𝑟 <  𝑟∗(𝑠) should be vetoed by P1 and 

rating, r, such that 𝑟 >  𝑟∗(𝑠) should be vetoed by P2. Sub-game perfect 

equilibria (SPE) can therefore be characterized as a set of ‘veto 

thresholds’,  (𝑟∗(𝑆), 𝑟∗(𝑆)) defined for every decision state, 𝑆, and 

recursively calculable using eq. 3. 

4. Game Tree Complexity 

We now investigate the complexity of the game tree associated 

with the sub-game, 𝐺𝑖 . Any decision state with c1, c2 ≥ 1, representing 

the process of selecting a given rating, leads to at least one sub-tree as 

shown in Figure 2. The number of decision points, 𝒩(𝑐1, 𝑐2), contained 

in the sub-tree starting with (c1,c2) can therefore be determined 

recursively as: 
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𝒩(𝑐1, 𝑐2) = 2 + 𝒩(𝑐1 − 1, 𝑐2)

+ 𝒩(𝑐1, 𝑐2 − 1), 

eq. 

6 

with the boundary conditions: 𝒩(𝑚, 0) = 𝒩(0, 𝑚) = 𝑚. Table 1 

provides sub-game complexity for several veto allocations.  Multiple 

slot game trees are correspondingly more complex, since all partitions 

of c1 and c2 among the slots must be considered. For example, the game 

 𝐺(2,1,1) is composed of the five sub-games 𝐺1(1,1),  𝐺2(1,1), 

𝐺2(1,0), 𝐺2(0,1),  and 𝐺2(0,0), and produces ten decision points total. 

Optimal play requires solving Equations 3 through 5 for each 

decision point. This may be a difficult task in real-world situations such 

as during jury selection in a courtroom. Computer algorithms could, in 

principle, accomplish optimal play, however, information would have 

to be updated as panelists are vetoed and replacement panelists are 

selected from the pool, interviewed and rated. This new rating 

information would be entered and optimal solutions recalculated 

throughout the election process. This in itself may impose costs on the 

players, for example, by distracting them from the ongoing 

proceedings, or by requiring the services of experts dedicated to 

performing such calculations. Many practitioners therefore seek 

reasonable estimates to optimal play which are thought to provide 

outcomes which, while not optimal, are in some sense acceptable. In 

the following, we discuss several common strategy choices and 

compare their expected performance against optimal play. 

5. Limited Foresight Strategies 

Even when players are aware of the existence of an optimal 

solution given by eq. 3, applying the necessary recursive calculations 

to games with large numbers of slots and vetoes may itself be 

prohibitive. Even in the case of a single slot with two vetoes per side, 

optimal solution would require 18 such recursions. Real-world 

selections such as trial juries comprising 12 slots with four or more 

vetoes per side are exponentially more complex. For example, 

numerical calculations by the author show that the game G(12,4,4) 

contains 8,293,348 separate decision points. It would be a daunting task 

to solve such a case in the absence of computer assistance. In practice, 

some form of limited foresight (LF) strategy is applied to such cases. 
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Formal LF strategies are defined by the level of play which a player 

considers at each decision point. For example, in a ‘k = 1’ LF strategy, 

a player would only look one move ahead. In a slight variation, we 

define LF models for selection games based on the number of vetoes 

and slots considered by the player. A player applying LF(n,c1,c2) 

behaves as though they are considering n slots with the players have c1 

and c2 available vetoes, respectively. We feel that this would more 

closely model the process used by LF decision makers in selection 

games since they would be focused on the more tangible number of 

remaining vetoes rather than the more abstract concept of level of play. 

In the following, we discuss several, lower order LF strategies. 

LF(1,0,0): ‘Always Accept’ 

This model contains no decision points. A player behaves as 

though it has no vetoes and that its opponent has no vetoes. A party 

implementing LF(1,0,0) will always accept. While it may seem to be 

an unreasonable strategy, it has been adopted by decision makers who 

feel that the cost of even understanding the selection problem is too 

great, or that exercising vetoes may reflect poorly on them, antagonize 

other decision makers, jurors, panelists, judges, etc. Such externalities 

are beyond the scope of this work, however we maintain LF(1,0,0) as a 

viable model for comparison purposes. 

LF(1,1,0) and LF(1,0,1): ‘Pool Average’ 

This model contains one decision point. For LF(1,1,0), P behaves 

as though it has a single veto, to be applied to a single slot. Player P1 

further behaves as though its opponent, P2, has no vetoes. In this case, 

P can elect to exercise a veto without considering P2’s potential 

reaction. Applying, eq. 3, we find  𝑟∗ =  �̅�. In other words, when 

exercising a veto, P1 expects, on average, to obtain a replacement value 

equal to the pool average. Therefore, if a rating falls below the pool 

average, P1 will exercise a veto. If a rating falls above the pool average, 

P1 will not veto. The model LF(1,0,1) describes the same condition for 

player P2, however with the threshold 𝑟∗ =  �̅� reflecting the maximum 

rating that will be accepted by P2. Opposing players, each using Pool 

Average strategies, would never agree on accepting a candidate and 

would be aggressive in employing vetoes. At least one player, and 

probably both, will exhaust all vetoes early in the selection process and, 
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having done so would be forced to accept the remaining candidates as 

they are presented. 

LF(1,1,1) 

This model contains four decision points. The player assumes 

that the opposing player will respond to a replacement with LF(1,0,1) 

or LF(1,1,0), and therefore expects the opponent to exercise a veto, 

should a replacement rating fall below for P1, or above for P2, the pool 

average, �̅�. Using eq. 3, we can calculate the threshold values: 

 

 𝑟∗ =  ∫ 𝑟 𝜌(𝑟)𝑑𝑟  +  ∫ �̅� 𝜌(𝑟)𝑑𝑟 
1

�̅�

�̅�

0

  

  =  �̅� − ∫ (𝑟 − �̅�)𝜌(𝑟)𝑑𝑟 
1

�̅�

  

  =  �̅� − 𝛿𝑝                  𝛿𝑝 ≥ 0  

   
eq. 7 

 

 𝑟∗ =  ∫ �̅� 𝜌(𝑟)𝑑𝑟  +  ∫ 𝑟 𝜌(𝑟)𝑑𝑟 
1

�̅�

�̅�

0

  

  =  �̅�  + ∫ (�̅� − 𝑟 )𝜌(𝑟)𝑑𝑟 
�̅�

0

  

  =  �̅� + 𝛿𝑞                  𝛿𝑞 ≥ 0  

The effect of considering the opposing parties action is to reduce 𝑟∗ by 

an amount  𝛿𝑝, and increase 𝑟∗ by an amount 𝛿𝑞, relative to the pool 

average �̅� . There is a range of values bracketing the pool average that 

is acceptable to both players. 

Regardless of the limited LF model chosen, we assume that if the 

terminal node of a history falls within the LF horizon, the player will 

play the true game rather than the LF model. For example, a player can 

play LF(1,1,1)  unless its opponent has exhausted all vetoes, at which 

time it would play LF(1,1,0) for P1, or LF(1,0,1) for P2.  
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Example 1 

We examine the game G(6,4,4), assuming a uniform pool 

distribution: 

 𝜌(𝑟) = 𝑈(1,0) eq. 8 

Numerical calculations show that this game comprises 520,087 

decision points contained within 178,751 distinct histories. 

Optimal Solution: 

As the game proceeds, replacement values are drawn at random 

as players exercise vetoes. Different repetitions of the game will 

therefore likely follow different histories. The optimal veto threshold 

value at any given decision point will depend upon the particular history 

that is followed. Since replacement ratings are selected at random from 

the pool, one cannot know which history will be followed in any 

instance of the game. We therefore examine threshold values over all 

possible histories using what we will call a ‘Leaf Diagram’ such as is 

shown in Figure 3. Figure 3 summarizes all possible optimal threshold 

values, 𝑟∗, that may be obtained by the maximizing player, P1. The 

shaded region shows the optimal threshold range as a function of the 

number of decision points, d, encountered by P1 in the preceding 

history, assuming that P1 was the first to play. Since all histories start at 

the root node, the first decision point at d = 1 has a specific value, in 

this case, 𝑟∗ ≈ 0.38 . The longest possible histories, with both players 

using all available vetoes and P1 withholding its last veto until the final 

decision point, in this case with d = 13,  result in a threshold 𝑟∗ = �̅� =
0.5 .  Between these two extremes, threshold values depend upon the 

particular history followed. The solid line in Figure 3 represents the 

average threshold value, 〈𝑟∗〉 , among the histories. Error bars represent 

one standard deviation of threshold value about the average. The 

threshold range initially increases with the level of play from the root 

node value, and then decreases again toward the terminal nodes of the 

longest histories. The average threshold value increases from the initial 

d = 1 value of 𝑟∗ ≈ 0.38  toward the pool average, 𝑟∗ = 0.5, as the level 

of play increases. 
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Limited Foresight Models 

LF(1,0,0): Since this strategy is equivalent to always accepting, 

threshold values are given by 𝑟∗ = 1 and 𝑟∗ = 0. With reference to 

Figure 3, we see that there is no possible history for which 𝑟∗ = 1 is an 

optimal threshold value. This model can never represent an optimal 

strategy to the current selection game. 

LF(1,1,0): In this case, 𝑟∗ =  �̅� = 0.5. This value is plotted as the 

dot-dash line in Figure 3. At early decision points with d < 6, no 

histories include the threshold 𝑟∗ = 0.5 as an optimal value.  Between 

d = 6 and d = 10, only a small fraction of histories include this value. 

Only beyond 10 decisions, does the LF(1,1,0) model become consistent 

with optimal threshold values for a significant fraction of histories. This 

is simply the result of slots being settled and vetoes being exhausted 

such that later decision points more closely resemble the LF(1,1,0) 

model. 

LF(1,1,1): In this case, �̅� = 0.5 and  𝛿𝑝 =  𝛿𝑞 =  0.125. The 

threshold values are therefore given by 𝑟∗ = 0.375 and 𝑟∗ = 0.625. 

Keeping in mind that the last decision in any given history reverts to 

LF(1,1,0) for P1 (and LF(1,0,1) for P2), we calculate the average LF 

values over all histories. Shorter histories will revert to LF(1,1,0) for P1 

(or LF(1,0,1) for P2) earlier in the level of play. The average LF values 

thus calculated for the maximizer, P1, are shown by the white dotted 

curve in Figure 3. For the game under consideration, the LF(1,1,1) 

result is remarkably similar to the average optimal threshold value 

given by the solid black curve and we would expect LF(1,1,1) to 

perform well. However, this is not the case in geneal. 

 

Figure 4 shows Leaf Diagrams for a variety of games with 

differing veto allotments. As in Figure 3, the shaded regions show the 

numerically calculated optimal threshold values for all possible 

histories. The solid curve in each graph represents the LF(1,1,1) values 

averaged over histories. Regions where the solid black curve falls 

outside the shaded area indicate that LF(1,1,1) model is a poor 

approximation to the optimal solution. When the maximizer has fewer 

vetoes than the minimizer, L(1,1,1) overestimates the optimal 

Electronic copy available at: https://ssrn.com/abstract=2986427



threshold. When the maximizer has more vetoes than the minimizer, 

L(1,1,1) underestimates the optimal threshold. As expected, this effect 

is more pronounced with greater veto imbalances. 

6. Performance of Limited Foresight Strategies 

To evaluate the performance of LF strategies, we have performed 

Monte Carlo game simulations, playing various LF strategies against 

the optimal game theory strategy defined by eq. 2, for the games 

𝐺(𝑁, 1,1), 𝐺(𝑁, 4,4), 𝐺(𝑁, 2,6), and 𝐺(𝑁, 6,2),  and for 𝑁 = 1  
through 𝑁 = 12. The replacement pool rating distribution is assumed 

uniform, 𝜌(𝑟) = 𝑈(0,1). Each game was played by computer 

algorithm and repeated 100,000 times. (These simulations should not 

be confused with Monte Carlo tree search techniques used in artificial 

intelligence game models. Such models randomly sample large game 

trees with known node values to search for favorable states, whereas 

the current study evaluates entire trees with potentially unknown node 

values.) Results are reported in Figure 5 as a percentage of the 

equilibrium game value. We have assumed that the minimizer, P2, 

always plays the optimal strategy (P2 assumes P1 will play optimally), 

while the maximizer, P1, variously plays optimal strategy, LF(1,1,1), 

LF(1,1,0), and LF(1,0,0). Results are plotted in Figure 5 for these 

various strategies. 

These graphs can be understood as follows: The threshold values 

for LF(1,1,1) and LF(1,1,0) are approximately 0.375 and 0.5, 

respectively. Comparison can be made between these values and the 

optimal threshold values with reference to Figure 4. When optimal 

threshold values are, on average, close to an LF value, that LF model 

performs well. This is the case, in general, when P1 and P2 have equal 

numbers of vetoes. When P1 has fewer vetoes than P2, optimal threshold 

values are generally lower than the LF values, thereby reducing the LF 

performance. When P1 has more vetoes than P2, optimal threshold  

values are, on average, higher than the LF values, resulting, again, in 

poor performance, however, with somewhat better performance found 

from L(1,1,0) (𝑟∗ = 0.5) than from L(1,1,1) (𝑟∗ ≈ 0.375). 
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7. Discussion 

We have presented optimal solutions to common two-player, 

zero sum selection under veto games, together with limited foresight 

approximations. The full solution to these games requires somewhat 

complex recursive calculation of veto thresholds over a potentially 

large game tree. Common selection games such as those describing trial 

jury selection may contain up to several million decision points, 

precluding, for all practical purposes, their solution other than by 

computer algorithm. We have therefore investigated relatively simple 

limited foresight models which limit the number of slots and the 

number of vetoes considered at any given decision point. The simplest 

models, LF(1,1,0) for the maximizer and LF(1,0,1) for the minimizer, 

consider only a single slot  with the current player having a single veto 

and the opposing player having none. This amounts to players using the 

pool average as their veto threshold value. Monte Carlo game 

simulations show that LF(1,1,0) obtains about 95% of the game value 

for single slot games (e.g., G(1,4,4)). However, the model fares poorly 

for more complex multi-slot games (e.g., < 60% of game value for 

G(12,4,4)) and for games with uneven veto allocations. 

The next simplest model, LF(1,1,1), considers a single slot under 

contention with both players having a single veto. This model produces 

good results for games with even veto allegations (> 85% of game value 

for G(12,4,4)), but fares poorly for uneven veto allocations (<75% of 

game value for G(12,2,6)). The model does better when the party using 

it has more vetoes than the opposing party (e.g., G(N,6,2) for P1), 

however, in such cases, the pool average model (e.g., LF(1,1,0)) may 

perform even better. 

As is the case with any bounded rationality strategy, players 

employing limited foresight strategies must consider tradeoffs between 

the costs of obtaining deeper foresight and the benefits afforded by 

doing so. The LF(1,1,0) and LF(1,0,1) strategies are relatively simple 

to implement, requiring only the calculation a single pool average, 

which could be done easily by hand. However, these low order 

strategies often perform poorly against strategies using deeper 

foresight, such as LF(1,1,1), under many common conditions. The 

advantage of using deeper foresight strategies, however, comes at the 
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cost of rapidly increasing complexity. LF(1,1,1), for example, requires 

the recursive application of eq. 3, including potentially complex 

integration over the rating probability distribution,  over 4 decision 

points. While this is likely to be much simpler than optimal play which 

may comprise thousands of decision points, it may nevertheless impose 

significant calculation costs. In addition, players using LF(1,1,1) and 

deeper strategies would have to carefully monitor remaining vetoes at 

each state of play, so that they would know when to switch to lower 

foresight levels as the game nears a termination or the veto allocations 

become unbalanced. Finally, the risk of calculation and execution 

errors may be higher for players using deeper foresight strategies, 

possibly negating their advantage. 

To avoid these risks, it is likely that players using LF(1,1,1) or 

higher strategies would employ computer assistance for calculating 

threshold values and tracking vetoes. The costs of employing computer 

assistance include hardware and software costs, costs associated with 

learning how to use computer software, as well as subjective costs such 

as ‘giving up control’ to computers and distrust of third party products.  

However, once computing tools are employed, there is little if any 

additional cost associated with executing the optimal, fully recursive 

strategy, since integration and recursive calculation, while difficult for 

humans, are essentially trivial for computers. Once the decision is made 

to use computing technology, it makes little sense to apply any limited 

foresight model at all. With this in mind, it would seem that realistic 

choices are 1) foregoing technology and its associated costs and playing 

strategies similar to LF(1,1,0)   (or LF(1,0,1) for the minimizer) or 2) 

employing computing technology and playing the full optimal strategy.  

A second option is to use a strategy similar to LF(1,1,1), 

however, with an estimated, rather than calculated, 𝛿 value. In other 

words, P1 would veto candidates rated lower than 𝛿1 below pool 

average and P2 would veto candidates rated higher than 𝛿2  above pool 

average, with 𝛿1 and 𝛿2 set by the respective players using intuition or 

experience. Such ‘pseudo’ LF play may afford some of the benefits of 

LF, however, without the associated calculation costs. This, however, 

is risky, since intuition may not be trusted in complex situations, 
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especially so when veto allotments are uneven and even true LF 

strategies do not produce good results. 

The analysis presented here assumes a common rating system, 

known to both players, over which players have opposing interests. 

This amounts to a zero-sum selection game of complete information. In 

many situations, although players’ ultimate interests may be directly 

opposed, there is no guarantee that they will evaluate ratings in the same 

manner and adopt identical rating systems. For example, although 

parties to a jury trial have opposing interests in the outcome of the trial, 

their attorneys may have different opinions of the favorability of jurors 

toward their preferred outcome. There is, however, some statistical 

evidence that jury selection does proceed as a zero-sum game. A recent 

study investigated over 700 felony trials in two counties in Florida, 

found that the vetoes exercised by prosecutors and defense were 

opposing when considering a rating scale based on age (Anwar, Bayer, 

& Hjalmarsson, 2012). In this study, prosecutors tended to veto 

younger jurors while defense attorneys tended to veto older jurors. 

In a similar manner, the form of the utility function may differ 

from the multiplicatively separable utility given by eq. 1. This may be 

the case where there are interactions between candidates, such that the 

favorability of each depends on the characteristics of the others. Again, 

to use the example of a jury trial, an easily influenced or gullible juror 

may seem favorable if there are other favorable seated jurors who have 

an influential personality type. However, the same gullible juror would 

seem unfavorable if the influential jurors were unfavorable. In future 

work we hope to explore how LF models are in fact used by decision 

makers, and whether our conclusions regarding the efficacy of LF  

models hold true for non-zero sum games and games subject to more 

complex utilities. 
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Figures 
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Figure 1. Game sub-tree for P1 and P2 each having a single veto. 

Circles represent decision points for P1 and squares represent decision 

points for P1. Play starts with P1 at node 1. 
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Figure 2. A sub-tree representing the decision process for a single 

rating (seat or jury member). Players P1 and P2 have c1 and c2 vetoes, 

respectively.  
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Figure 3. Veto threshold values for player P as a function of level 

of play for the game G(6,4,4) and a uniform pool distribution, 𝜌(𝑟) =
𝑈(0,1). The shaded area shows the optimal threshold range for all 

possible histories. The solid line is the average threshold with error bars 

representing one standard deviation over histories. The dot-dash line 

shows the L(1,1,0) veto threshold. The white dotted curve shows the 

average of the L(1,1,1) thresholds over histories. 
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Figure 4. Plots showing player P veto threshold 𝑟∗ vs. decision 

level for various selection games. Shaded regions show thresholds over 

all possible histories. The solid curve shows the L(1,1,1) LF 

approximation. L(1,1,1) performs poorly for games with a veto 

imbalance. 
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Figure 5. Monte Carlo Game simulations for games with 

C=(1,1), C=(4,4), C=(2,6) and C=(6,2). Three LF strategies and one 

optimal strategy are played by the maximizer, P, against the minimizer, 

Q, who always plays optimally. Game outcomes for the maximizer, P, 

are plotted as the average of the percent of game value. Each data point 

represents 100,000 simulated selection games and a uniform rating pool 

distribution, 𝜌(𝑟) = 1,  is assumed. 
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Tables 

 

 

     C1    
         

  0 1 2 3 4 5 6 

 0 0 1 2 3 4 5 6 

 1 1 4 8 13 19 26 34 

 2 2 8 18 33 54 82 118 

C2 3 3 13 33 68 124 208 328 

 4 4 19 54 124 250 460 790 

 5 5 26 82 208 460 922 1714 

 6 6 34 118 328 790 1714 3430 

         
 

Table 1. Game complexity for various veto allocations for a 

single seat panel selection game. The values represent the number of 

decision points contained in the game tree. Game complexity increases 

rapidly with larger veto allocations. 
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